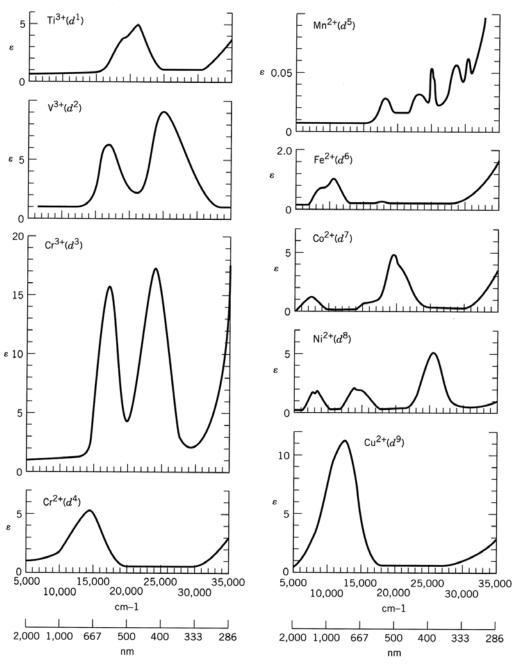
Absorption Spectra

 Colors of transition metal complexes result from absorption of a small portion of the visible spectrum with transmission of the unabsorbed frequencies.

Visible Spectra of $[M(H_2O)_6]^{n+}$ Complexes



• $Ti(H_2O)_6^{3+}$ appears purple (red + blue) because it absorbs green light at $\sim 500 \text{ nm} = \sim 20,000 \text{ cm}^{-1}$.

Beer-Lambert Law

• The absorption at any wavelength obeys the Beer-Lambert Law:

$$A = \log(I_{o}/I) = \varepsilon cb$$

where A = absorbance

 $I_{\rm o}$ = incident light intensity

I = transmitted light intensity

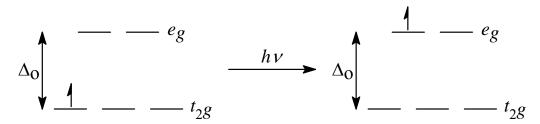
 ε = molar absorptivity at a particular wavelength

c = molar concentration

b = path length through the absorbing medium

Electronic Transitions

- In the CFT model, absorption causes electrons from lower lying d orbitals to be promoted to higher levels.
 - For $Ti(H_2O)_6^{3+}(d^1)$ the absorption causes the configuration to change from $t_{2g}^{-1}e_{g}^{-0}$ to $t_{2g}^{-0}e_{g}^{-1}$.



- The change in configuration causes a change in the term state of the system.
- For a free d^1 ion, the ground state term is 2D , a five-fold degenerate term arising from the five possible ways of placing the one electron in the five degenerate *d* orbitals.

$$d_{xy}^{1} = d_{yz}^{1} = d_{xz}^{1} = d_{xz}^{2} = d_{z^{2}}^{1}$$

- In an octahedral field this term is split into a new ground state term, corresponding to the configuration $t_{2g}^{1}e_{g}^{0}$, and a new excited state term, corresponding to the configuration $t_{2g}^{0}e_{g}^{1}$.
 - The ground state term is triply degenerate, corresponding to the three equivalent microstates represented by $t_{2g}^{1}e_{g}^{0}$. $t_{2g}^{1}e_{g}^{0} \rightarrow d_{xy}^{1} = d_{yz}^{1} = d_{xz}^{1}$

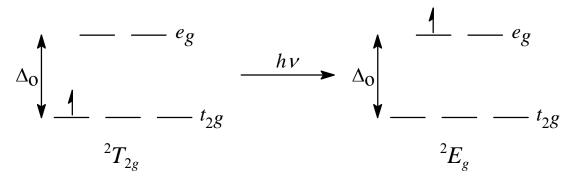
$$t_{2g}^{1}e_{g}^{0} \rightarrow d_{xy}^{1} = d_{yz}^{1} = d_{xz}^{1}$$

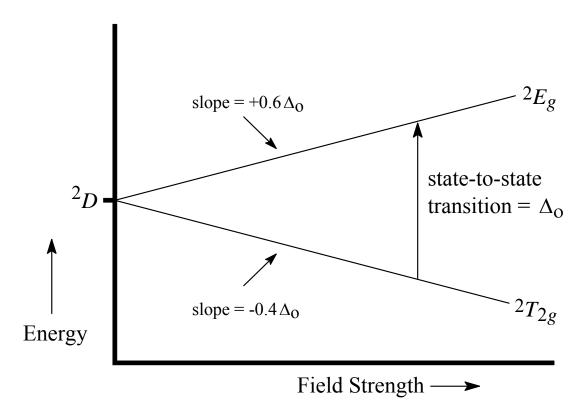
• The excited state is doubly degenerate, corresponding to the two microstates represented by $t_{2g}^{0}e_{g}^{1}$. $t_{2g}^{0}e_{g}^{1} \Rightarrow d_{x^{2}-y^{2}}^{1} = d_{z^{2}}^{1}$

$$t_{2g}^{0}e_{g}^{1} \Rightarrow d_{x^{2}-y^{2}}^{1} = d_{z^{2}}^{1}$$

- The new ground state term is designated ${}^2T_{2g}$, and the new excited state term is designated ${}^{2}E_{g}$.
 - Both terms are doublets, because the spin multiplicity is 2S + 1 = $(2)(\frac{1}{2}) + 1 = 2.$

Term Splitting Diagram for $d^{1}(O_{h})$





- The energy difference between the two states is $\Delta_0 = 10Dq$, which is energetically equivalent to the frequency of the absorption, for $[\text{Ti}(\text{H}_2\text{O})_6]^{3+}\sim20,000 \text{ cm}^{-1}$.
 - Breadth of the observed band is in part a result of the oscillation of the strength of Δ_o as the complex vibrates.

Free-Ion Terms for d^{1-10} Configurations

• Transition metal ions with configurations $d^2 - d^8$ have more than one free-ion term.

d^n	Free-Ion Term
d^{0}, d^{10}	^{1}S
d^{1} , d^{9}	$ ^2D$
d^2 , d^8	${}^{1}S, {}^{1}D, {}^{1}G, {}^{3}P, {}^{3}F$
d^3 , d^7	^{2}P , $^{2}D(2)$, ^{2}F , ^{2}G , ^{2}H , ^{4}P , ^{4}F
	$^{1}S(2)$, $^{1}D(2)$, ^{1}F , $^{1}G(2)$, ^{1}I , $^{3}P(2)$, ^{3}D , $^{3}F(2)$, ^{3}G , ^{3}H , ^{5}D
d^5	$ ^{2}S, ^{2}P, ^{2}D(3), ^{2}F(2), ^{2}G(2), ^{2}H, ^{2}I, ^{4}P, ^{4}D, ^{4}F, ^{4}G, ^{6}S$

• Terms for d^n are the same as for d^{10-n} .

Determining the Ground State Free-Ion Term

- ① Write out the configuration so as to maximize the total orbital angular momentum and total spin (Hund's Rule).
- ② Determine the orbital term from $L = |\Sigma M_L|$, where

③ Determine the spin multiplicity as 2S + 1, where $S = |\Sigma m_s|$.

$$d^{2} \frac{1}{+2} \frac{1}{+1} \frac{1}{0} \frac{1}{-1} \frac{1}{-2}$$

$$L = 2 + 1 = 3 \Rightarrow F$$

$$S = (2)(\frac{1}{2}) = 1 \Rightarrow 2S + 1 = 3 \Rightarrow {}^{3}F$$

$$d^{5} \frac{1}{+2} \frac{1}{+1} \frac{1}{0} \frac{1}{-1} \frac{1}{-2}$$

$$L = 2 + 1 + 0 - 1 - 2 = 0 \implies S$$

$$S = (5)(\frac{1}{2}) = \frac{5}{2} \implies 2S + 1 = 6 \implies {}^{6}S$$

$$d^{6} \frac{1}{+2} \frac{1}{+1} \frac{1}{0} \frac{1}{-1} \frac{1}{-2}$$

$$L = (2)(2) + 1 + 0 - 1 - 2 = 2 \Rightarrow D$$

$$S = (5)(\frac{1}{2}) + (1)(-\frac{1}{2}) = 2 \Rightarrow 2S + 1 = 5 \Rightarrow {}^{5}D$$

Splitting of Free-Ion Terms in Various Fields

- Splitting diagrams for any $d^{1} d^{9}$ configuration can be constructed.
- The terms into which free-ion terms are split depend upon the symmetry of the complex.
- Splitting of free-ion terms for O_h is shown below.

Free-ion	
Term	Terms in O_h
S	$oxedsymbol{A}_{1g}$
P	$oldsymbol{T}$
D	$E_g + T_{2g}$
F	$A_{2g} + T_{1g} + T_{2g}$
G	$A_{1g} + E_g + T_{1g} + T_{2g}$
H	$E_g + 2T_{1g} + T_{2g}$
I	$egin{align*} & F_{1g} \ E_g + T_{2g} \ A_{2g} + T_{1g} + T_{2g} \ A_{1g} + E_g + T_{1g} + T_{2g} \ E_g + 2T_{1g} + T_{2g} \ A_{1g} + A_{2g} + E_g + T_{1g} + 2T_{2g} \ \end{array}$

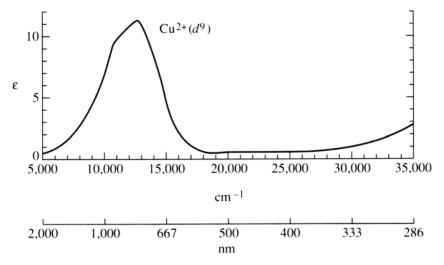
• Term splitting in fields of other symmetry can be deduced either by descent in symmetry from O_h , or by constructing the reducible representation for the free-ion term in the appropriate point group and reducing it into its component irreducible representations.¹

¹Cf. R. L. Carter, *Molecular Symmetry and Group Theory*, Wiley, NY 1998, p. 205 & 233-236.

Electronic Transitions for $d^9 O_h$

- For d^1 there is only one state-to-state transition, ${}^2T_{2g} \rightarrow {}^2E_g$.
- For d^9 there is also one state-to-state transition, but it is ${}^2E_g \rightarrow {}^2T_{2g}$.
 - For $d^9 O_h$ the transition can be seen as demotion of a "hole" (i.e., electron vacancy).

- This is an example of a general "hole formalism", whereby terms for a d^n configuration are the same as those for d^{10-n} , but the order of same-spin terms is reversed.
- $\text{Cu(H}_2\text{O)}_6^{2+}$ has a blue color due to the single ${}^2E_g \to {}^2T_{2g}$ electronic transition at ~800 nm.



Electronic Transitions for Other Configurations in O_h

- Other d^n cases (n = 2-8) have more than one possible d-d transition because there are more possible states.
 - Multiple electron promotions and electron demotions can occur.
 - Non-equivalent arrangements for the same $t_{2g}^{n}e_{g}^{m}$ configuration may be possible.
 - States with spin multiplicities different from the ground state may exist.
 - Both high- and low-spin ground state configurations may be possible.
- The types of transitions possible for transition metal complexes are
 - ① Transitions between the ground state and excited states with the same spin.
 - 2 Transitions between the ground state and excited states with different spin.
 - 3 Transitions involving electron transfer between the metal and ligand (charge transfer).
- Only charge transfer (CT) transitions are quantum mechanically allowed.
 - CT transitions result in absorption bands with high molar absorptivity $(\varepsilon >> 10^3)$.
 - CT transitions typically fall in the u.v.
- Color in transition metal complexes arises from *d-d* transitions in the visible region.
 - These arise from breakdown of quantum mechanical selection rules.
 - *d-d* transitions between same-spin states typically have low molar absorptivities ($\varepsilon \approx 5 100$).
 - *d-d* transitions between states with different spin multiplicities typically have very low molar absorptivities ($\varepsilon << 1$).

Selection Rules

- *d-d* transitions in the visible region occur as a result of a breakdown in either or both of the following selection rules.
 - ① Laporte's Rule. If a system is centrosymmetric, transitions between states with the same inversion symmetry $(g \rightarrow g, u \rightarrow u)$ are forbidden, but transitions between states of different inversion symmetry $(g \rightarrow u, u \rightarrow g)$ are allowed.
 - ② *Spin Multiplicity Rule.* Transitions between states with different spin multiplicities are forbidden.

Breakdown of the Laporte Rule

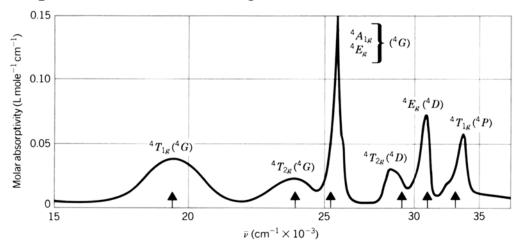
- In O_h and D_{4h} , all d orbitals are *gerade* and so too are the states arising from their d configurations.
 - Thus, all transitions of octahedral and square planar complexes are *Laporte forbidden*.
- Laporte forbidden transitions occur as a result of distortions from centrosymmetry that occur continuously as the complex vibrates.
 - These distortions cause d-p mixing (p orbitals are ungerade) and set up transitions between states with varying amounts of p character.
 - The vibration-induced breakdown of the Laporte Rule makes the *d-d* transitions *vibronically allowed*.
- Static loss of centrosymmetry has the same effect (e.g., $Co(en)_3^{2+} D_3$).
- Either vibronic or static distortion results in a small departure from centrosymmetry, so the molar absorptivities are typically $\varepsilon \approx 5 50$.
- Tetrahedral ML_4 complexes (T_d) have no inversion symmetry.
 - *d-d* transitions for tetrahedral complexes are *Laporte allowed*.
 - Because they are allowed, these transitions have higher molar absorptivities ($\varepsilon \approx 100-1000$).
- CT transitions are $g \leftrightarrow u$, allowed by the Laporte Rule, and so have very high molar absorptivities ($\varepsilon >> 10^3$).

Violations of the Spin Multiplicity Rule

- Transitions to excited states with different spin multiplicities lead to even weaker bands.
 - In complexes with vibronically allowed same-spin transitions, any spin forbidden transitions are likely to be too weak to be observed.
 - Octahedral d^5 high-spin complexes, which have no same-spin transitions, show only very weak bands from spin-forbidden transitions.

Example of a spin-forbidden transition:

• $Mn(H_2O)_6^{2+}$ is a d^5 high-spin octahedral complex with a very pale pink color, owing to a series of weak spin-forbidden transitions.



- Note that for all absorptions $\varepsilon < 0.15$.
- We will be most concerned with *d-d* transitions that are spin allowed (i.e., Laporte forbidden but vibronically allowed same-spin transitions).

Triplet Terms for $d^2 O_h$

- For free-ion d^2 , the triplet states are 3F and 3P .
 - Both terms split or change their identities in O_h .
 - ${}^3F \rightarrow {}^3A_{2g} + {}^3T_{1g} + {}^3T_{2g}$ ${}^3P \rightarrow {}^3T_{1g}$ The two ${}^3T_{1g}$ terms are labeled ${}^3T_{1g}(F)$ and ${}^3T_{1g}(P)$ to indicate the freeion term from which each arises.
- The triplet terms of d^2 in O_h arise from the following configurations:

Triplet States for $d^2 O_h$ in Order of Increasing Energy

Term	Configuration	Specific Degenerate Configurations	
$^{3}T_{1g}(F)$	t_{2g}^{-2}	$(d_{xy})^1(d_{xz})^1(d_{yz})^0$	
		$(d_{xy})^1 (d_{xz})^0 (d_{yz})^1$	
		$(d_{xy})^0 (d_{xz})^1 (d_{yz})^1$	
$^{3}T_{2g}$	$t_{2g}^{-1}e_{g}^{-1}$	$(d_{xy})^1 (d_{z^2})^1$	
		$(d_{xz})^1 (d_{x^2-y^2})^1$	
		$(d_{yz})^1 (d_{x^2-y^2})^1$	
$^{3}T_{1g}(P)$	$t_{2g}^{-1}e_{g}^{-1}$	$(d_{xy})^1 (d_{x^2-y^2})^1$	
		$(d_{xz})^1 (d_{z^2})^1$	
		$(d_{yz})^{-1}(d_{z^2})^1$	
${}^{3}A_{2g}$	e_g^{-2}	$(d_{x^2-y^2})^1 (d_{z^2})^1$	

Why Are There Two Different-Energy Triply Degenerate States for the Configuration $t_{2g}^{1}e_{g}^{1}$?

• In all three microstates of ${}^3T_{2g}$ the two electrons are placed in d orbitals that are geometrically orthogonal to each other:

$$(d_{xy})^1 (d_{z^2})^1 \qquad (d_{xz})^1 (d_{x^2-y^2})^1 \qquad (d_{yz})^1 (d_{x^2-y^2})^1$$

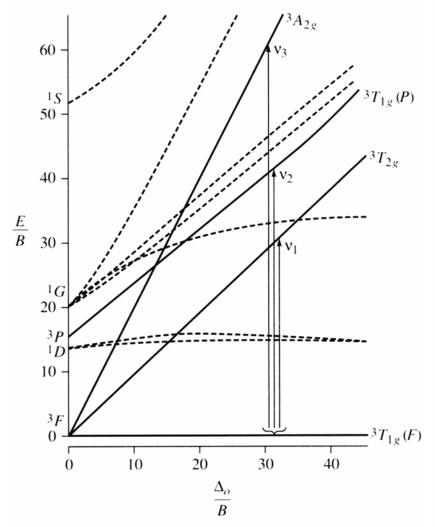
• In all three microstates of ${}^3T_{1g}(P)$ the two electrons are placed in d orbitals that lie in the same plane:

$$(d_{xy})^1 (d_{x^2-y^2})^1 \qquad (d_{xz})^1 (d_{z^2})^1 \qquad (d_{xz})^1 (d_{z^2})^1$$

• Electron-electron repulsions are less in the microstates of ${}^3T_{2g}$ than they are in the microstates of ${}^3T_{1g}(P)$, so the energy of the ${}^3T_{2g}$ state is lower.

Splitting Diagram for $d^2 O_h$

- There are many other states for d^2 that are not triplets, shown in the following diagram, but only transitions from the triplet ground state to triplet excited states are spin allowed.
 - This diagram, originally published by Tanabe and Sugano², shows the free-ion states, the octahedral states arising from them, and the energy separations between states as a function of Δ_0 .

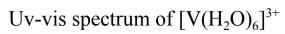


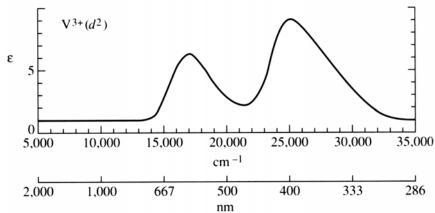
- Possible spin-allowed transitions giving rise to visible absorption bands: ${}^3T_{1g}(F) \rightarrow {}^3T_{2g}; {}^3T_{1g}(F) \rightarrow {}^3T_{1g}(P); {}^3T_{1g}(F) \rightarrow {}^3A_{2g}.$ • The ${}^3T_{1g}(F) \rightarrow {}^3A_{2g}$ transition, which simultaneously promotes two
 - electrons, is unlikely, and its band is often weak or unobserved.

²T. Tanabe and S. Sugano, *J. Phys. Soc. Japan*, **1954**, *9*, 766.

Transitions for $V^{3+}(d^2) O_h$ Complexes

Complex	$ \begin{array}{c} ^{3}T_{1g}(F) \rightarrow {}^{3}T_{2g} \\ \text{(cm}^{-1}) \end{array} $	$ \begin{array}{c} ^{3}T_{1g}(F) \rightarrow {}^{3}T_{1g}(P) \\ \text{(cm}^{-1}) \end{array} $	$ \begin{array}{c} ^{3}T_{1g}(F) \rightarrow {}^{3}A_{2g} \\ \text{(cm}^{-1}) \end{array} $	$\Delta_{ m o} \ ({ m cm}^{-1})$
$[V(H_2O)_6]^{3+}$	17,200	25,000	38,000	21,500
$[V(ox)_3]^{3-}$	17,000	24,000		17,800





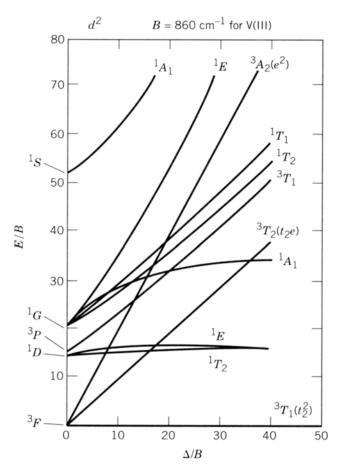
- $v_1 [^3 T_{1g}(F) \rightarrow {}^3 T_{2g}]$ and $v_2 [^3 T_{1g}(F) \rightarrow {}^3 T_{1g}(P)]$ are shown. $v_3 [^3 T_{1g}(F) \rightarrow {}^3 A_{2g}]$ at 38,000 cm⁻¹ falls in the uv and is not shown.

Tanabe-Sugano Diagrams

- Tanabe-Sugano diagrams for configurations $d^2 d^8$ are published in most advanced inorganic chemistry and group theory texts.³
 - These plot energy (E) above the ground state as Δ_0 changes.
 - *B* is the Racah parameter, which is a measure of repulsion between terms of the same multiplicity.
 - The ordinate is E/B and the abscissa is Δ_o/B .
 - Although they can be used quantitatively, most often Tanabe-Sugano diagrams are used qualitatively.
 - State notations usually do not show the subscript g notation, which should be added when discussing transitions of O_h complexes.
- Tanabe-Sugano diagrams for d^4 , d^5 , d^6 , d^7 have a vertical line down the middle, separating high-spin (low field) cases on the left, and low-spin (high field) cases on the right.

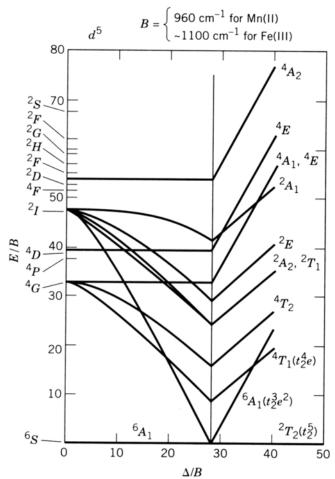
³Simplified diagrams are shown as Figure 11.7 in G. L. Miessler and D. A. Tarr, *Inorganic Chemistry*, 4th ed., Prentice Hall, NY, p. 427; more complete diagrams are shown in Appendix D in R. L. Carter, *Molecular Symmetry and Group Theory*, Wiley, NY, 1998, pp. 289-292.

Complete d² Tanabe-Sugano Diagram

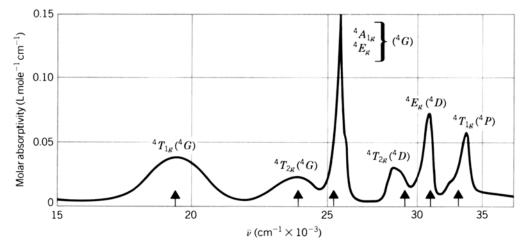


- In addition to the three possible spin-allowed transitions (cf. previous diagram), there are seven singlet states that suggest there could be as many as seven multiplicity (spin) forbidden transitions.
 - Transitions from the ${}^3T_{1g}$ ground state to any of the singlet states would have extremely low ε values and are seldom observed in routine work.
 - Some singlet states (e.g., ${}^{1}A_{1g}$, ${}^{1}E_{g}$) are so high in energy that transitions to them would fall in the uv, where they would likely be obscured by the intense CT band.

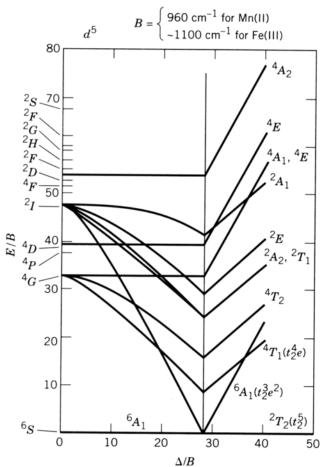
d^5 Tanabe-Sugano Diagram – High-Spin Side $(t_{2g}^3 e_g^2)$



- High-spin side (left) has no sextuplet excited states, so all transitions from the ${}^{6}A_{1g}$ ground state are spin forbidden, as previously noted.
 - Spectrum of $[Mn(H_2O)_6]^{2+}$ shows only very weak absorptions.



d^5 Tanabe-Sugano Diagram – Low-Spin Side (t_{2g}^5)



- As field strength increases on the high-spin side, the ${}^2T_{2g}$ state, emanating from the 2I free-ion term, descends in energy and becomes the ground state at the cross-over point to low-spin cases (right).
 - At the cross-over point to low-spin cases the former ${}^{6}A_{1g}$ ground state of high-spin cases ascends rapidly.
- On the low-spin side, there are potentially three spin-allowed transitions:

$${}^{2}T_{2g} \rightarrow ({}^{2}A_{2g}, {}^{2}T_{1g}) \quad {}^{2}T_{2g} \rightarrow {}^{2}E_{g} \quad {}^{2}T_{2g} \rightarrow {}^{2}A_{1g}$$

- Spectra of d^5 low-spin octahedral complexes are expected to show three bands, although the band from ${}^2T_{2g} \rightarrow {}^2A_{1g}$ might fall in the uv.
- The ${}^{2}A_{2g}$ and ${}^{2}T_{1g}$ states are accidentally degenerate (i.e., not fundamentally degenerate by symmetry), and only one band is expected from transitions to both states.

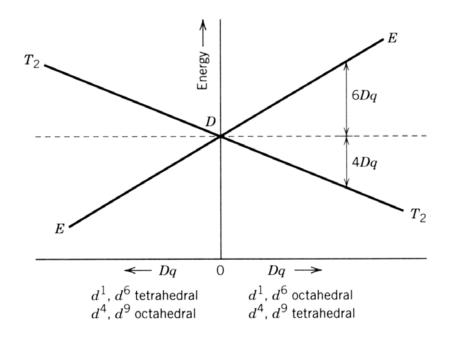
Orgel Diagrams - Principles

- In 1955 L. E. Orgel⁴ published a set of two diagrams, which are easily memorized, to account qualitatively for the spectra of all d^{1} – d^{9} highspin cases of both octahedral (O_h) and tetrahedral (T_d) complexes.
- Orgel diagrams are based on the following relationships:
 - ① $d^{n}(O_{h})$ and $d^{n\pm 5}$ have the same diagram.
 - ② $d^{n}(T_{d})$ and $d^{n\pm 5}$ have the same diagram.
 - 3 d^n , $d^{n\pm 5}(O_h)$ is the reverse of d^n , $d^{n\pm 5}(T_d)$.
 - $d^n(O_h)$ is the reverse of $d^{10-n}(O_h)$, and $d^n(T_d)$ is the reverse of $d^{10-n}(T_d)$.
- Labels on Orgel diagrams do not include spin multiplicity designations or *g* subscripts for octahedral cases.
 - Multiplicities must be added when discussing specific transitions.
 - Subscript g should be added to all states when discussing octahedral complexes with centrosymmetry (true O_h).
- Orgel diagrams only cover high-spin cases.
- Orgel diagrams only account for spin-allowed transitions.
- Orgel diagrams are for qualitative purposes only.
- Tanabe-Sugano diagrams must be used for low-spin cases and any spin-forbidden transitions (high-spin or low-spin).

⁴L. E. Orgel, *J. Chem. Phys.*, **1955**, 23, 1004.

Orgel Diagram for $d^{1}(O_{h})$ and Related Cases

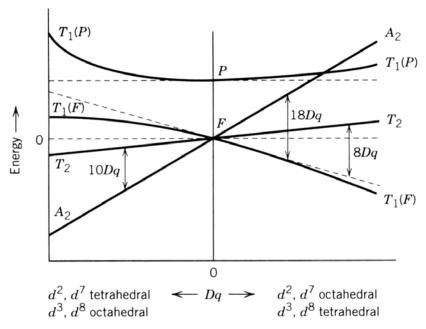
- This diagram can be easily remembered by starting with the d^1 case, where a free-ion D state is split into a T_2 ground state and a E excited state.
 - The rest of the diagram is generated by extrapolating the lines to the left side and invoking the relationships previously noted.



• One visible absorption band is expected for all cases covered by this diagram, either $T_2 \to E$ or $E \to T_2$.

Orgel Diagram for $d^2(O_h)$ and Related Cases

• This somewhat more complicated diagram can be remembered by knowing the spitting for $d^2(O_h)$, extrapolating the lines to the left side, and invoking the relationships previously noted.



- The $T_1(F)$ and $T_1(P)$, being same symmetry, curve away from each other as a result of the quantum mechanical non-crossing rule.
- Three visible absorption bands are expected for all cases covered by this diagram, either from a $T_1(F)$ or A_2 ground state.

Estimating Δ_0 from Spectra

- Relationship between Δ_0 and observed spectral band frequencies depends upon the d^n configuration.
 - The following guidelines apply only to those octahedral (O_h) cases covered by the Orgel diagrams.
- ① For cases related to the $d^1(O_h)$ diagram, the frequency of the single band $(T_{2g} \to E_g \text{ or } E_g \to T_{2g})$ is Δ_o . $\text{Cu}(\text{H}_2\text{O})_6^{2+}$: $\nu = 12,500 \text{ cm}^{-1} = \Delta_o$
- ② For d^3 and d^8 (left side of the d^2 Orgel diagram), the ground state is A_{2g} and the frequency of the first band, v_1 ($A_{2g} \rightarrow T_{2g}$), is Δ_o . Cr(NH₃)₆³⁺: $v_1 = 21,500 \text{ cm}^{-1} = \Delta_o$
- ③ For d^2 and d^7 high-spin, the ground state $T_{1g}(F)$ is repelled by the excited state $T_{1g}(P)$.
 - Relationship between the ground state and any excited state is not fixed in terms of Δ_o .
 - For exact work, the Racah parameter, B, must be used to correct for the repulsions between the T_{1g} states.
 - For an *approximate* value of Δ_0 the following relationships can be used.

$$\Delta_{0} \approx \nu_{1} [T_{1g}(F) \rightarrow T_{2g}]/0.8$$

 $\Delta_{0} \approx \nu_{3} [T_{1g}(F) \rightarrow A_{2g}]/1.8$
 $\Delta_{0} \approx \nu_{3} [T_{1g}(F) \rightarrow A_{2g}] - \nu_{1} [T_{1g}(F) \rightarrow T_{2g}]$

• Inasmuch as v_3 is often not observed, only the first relationship is generally usable.

$$V(H_2O)_6^{3+}$$
: $v_1 = 17,200 \text{ cm}^{-1}$
 $\Delta_0 \approx 17,200 \text{ cm}^{-1}/0.8 \approx 21,500 \text{ cm}^{-1}$

• For cases not covered by the Orgel diagrams, a quantitative Tanabe-Sugano diagram and estimation of the Racah parameter are required.

Jahn-Teller Effect

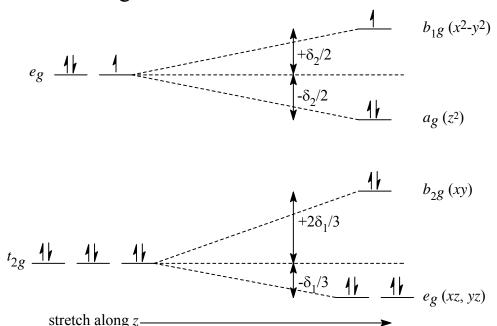
- Jahn-Teller Theorem: For any nonlinear system in a degenerate state, a distortion will occur that will lift the degeneracy.
- For octahedral complexes, only five ground-state configurations are immune from Jahn-Teller distortion:
 d³ (⁴A_{2g}), d⁵ high-spin (⁶A_{1g}), d⁶ low-spin (¹A_{1g}), d⁶ (³A_{2g}), d¹⁰ (¹A_{1g})
- All other configurations have a degenerate ground state (*E* or *T*).
- The strongest distortions result from a ${}^{2}E_{g}$ term arising from configurations $t_{2g}{}^{n}e_{g}{}^{1}$ and $t_{2g}{}^{n}e_{g}{}^{3}$, which have unequal distribution of electrons in orbitals pointing at ligands.
 - Consider the two microstates of $t_{2g}^{6}e_g^{3}$:

$$t_{2g}^{6}(d_{x^2-y^2})^2(d_{z^2})^1$$
 $t_{2g}^{6}(d_{x^2-y^2})^1(d_{z^2})^2$

- With $t_{2g}^{6}(d_{x^2-y^2})^2(d_{z^2})^1$, ligands in the xy plane are more shielded from the nuclear charge than those along z.
- With $t_{2g}^{6}(d_{x^2-y^2})^1(d_{z^2})^2$, ligands along z are more shielded from the nuclear charge than those in the xy plane.
- Either microstate results in inequality among M–L distances, producing a distortion from perfect O_h symmetry.
- The Jahn-Teller theorem does not predict the exact distortion, but the following corollary is observed.
- Jahn-Teller Corollary: If the system is centrosymmetric, the distorted configuration will also be centrosymmetric.
- For O_h complexes, the distortion will cause a descent in symmetry to a centrosymmetric subgroup.

Tetragonal Distortion of Octahedral ML₆

- For ML₆ complexes, a tetragonal distortion $O_h \rightarrow D_{4h}$ is the most probable result of the Jahn-Teller effect.
 - Either equal stretching or compression of two *trans*-related positions would result in this kind of distortion.
 - Jahn-Teller theorem cannot predict the distortion and either or both may occur.
- Suppose a d^9 ML₆ complex undergoes equal stretching of the *trans*-related positions along z.



• The distortion results in a Jahn-Teller stabilization energy:

$$\Delta E_{\rm JT} = -2(\delta_2/2) + \delta_2/2 = -\delta_2/2$$

- The new state is non-degenerate ${}^{2}B_{1g}$ in D_{4h} , because there is only one microstate for the configuration of lowest energy.
- The stabilization energy achieved drives the distortion.
- Compression along z would give the opposite splitting but the same stabilization energy.
 - The new state would be non-degenerate ${}^{2}A_{g}$ in D_{4h} .

Strong and Weak Jahn-Teller Distortion

- Configurations with $e_g^{\ 1}$ or $e_g^{\ 3}$ show pronounced Jahn-Teller distortions, because the orbitals are directed at ligands.
 - These configurations correspond to E_g terms.
- Configurations with t_{2g}^{-1} , t_{2g}^{-2} , t_{2g}^{-4} , t_{2g}^{-5} have weaker Jahn-Teller distortions, because these orbitals lie between ligands.
 - These configurations correspond to T_{1g} or T_{2g} states.
- Jahn-Teller distortion causes splitting of *E* and *T* terms, whether ground- or excited-state.
 - Energy split for any *E* term is greater than the energy split for *T* terms of the same complex.

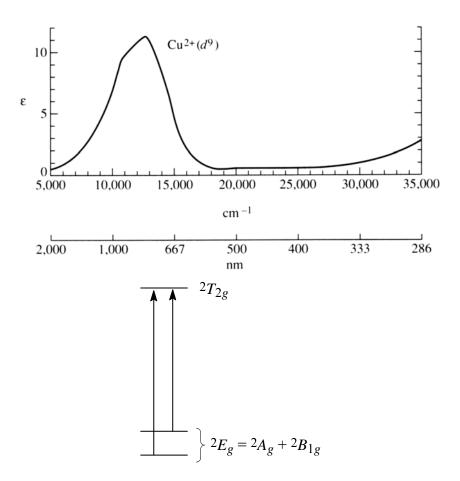
Example: Assuming a stretching tetragonal distortion, the two terms of an octahedral d^9 ML₆ complex would split as shown in the following diagram.



• Because both ground- and excited-state terms are split, additional transitions are possible, which contribute to band broadening.

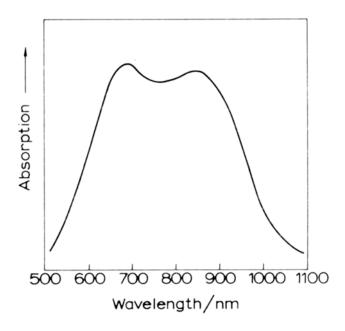
Spectroscopic Evidence of Jahn-Teller Distortions Splitting of the Ground State

- In some cases the larger split of an *E* state results in two partially resolved bands.
- The shoulder in the single band for $Cu(H_2O)_6^{2+}$ results from splitting of the 2E_g ground state into two distinct states with two transition energies to the slightly split ${}^2T_{2g}$ excited state.



Spectroscopic Evidence of Jahn-Teller Distortions Splitting of the Excited State

• The uv-vis spectrum of CoF_6^{3-} , a d^6 high-spin case, shows two distinct bands, although only one is expected from ${}^5T_{2g} \rightarrow {}^5E_g$.



- The ground state $({}^5T_{2g})$ is only slightly distorted, but the excited state $({}^5E_g)$ is strongly distorted.
- The 5E_g state is spit into two distinct states (${}^5A_g + {}^5B_{1g}$ in D_{4h}), whose different energies give rise to two different transition energies, and hence two bands.

 $^{{}^5\}text{CoF}_6{}^{3-}$ is an exception to the tendency for Co^{3+} ML₆ complexes to be d^6 low-spin.